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1. ABSTRACT 

Air Force operations are becoming increasingly automated, exemplified by the vision to 

enable single operator supervision of multiple remotely piloted aircraft (RPAs). While increased 

automation is a requirement for this vision, it also introduces human factors issues. In particular, 

the operator may become over- or under-reliant on automation. With inappropriate automation 

reliance, the ability of the operator to benefit from the automation’s support is jeopardized, and 

human-automation system performance may be compromised. This Air Force Office of Scientific 

Research (AFOSR) funded Laboratory Research Independent Research effort was conducted in 

collaboration with an AFOSR grant to academia (University of Cincinnati). The Air Force effort 

developed methodologies and configurations of an RPA simulation to support experimental studies 

conducted at the University of Cincinnati and the University of Central Florida. The joint effort 

explored human performance and reliance on automation with various levels and reliabilities of 

automation across multiple states of fatigue. The role of individual difference measures in 

successful automation usage, including video game experience, was examined. In addition, the 

utility of eye tracking to diagnose fatigue and suboptimal use of automation was explored. Finally, 

automation configurations were evaluated to explore their effectiveness in mitigating inappropriate 

automation reliance. The objective of these linked efforts was to gain a better understanding of the 

circumstances under which individual differences, fatigue, and automation characteristics may 

interact to produce inappropriate reliance on automation. These results will inform methods being 

considered to optimize automation use that would benefit Air Force programs requiring 

supervisory control of autonomous systems. 

 

2. INTRODUCTION 

Air Force operations are becoming increasingly automated, exemplified by the vision to 

enable single operator supervision of multiple remotely piloted aircraft (RPA). Single operator 

control of multiple RPAs is anticipated to be a particularly time-critical, cognitively demanding 

multi-task work environment (Calhoun, Ruff, Draper, & Wright, 2011; Guznov, Matthews, Funke, 

& Dukes, 2011). In response, developments are underway to extensively automate RPA functions 

with the goal of enhancing the operator’s ability to manage task demands. However, to realize the 

benefits of automation, in terms of improved mission effectiveness, an appropriate level of trust in 

the automation must be established and maintained (Lee & See, 2004). For instance, RPA 

automation carries the risk of operator over-reliance on the technology, leading to complacency 

effects (as shown empirically in multi-RPA simulations, e.g., Calhoun et al., 2011). However, if an 

operator views the automation’s functioning or reliability as suspect, under-reliance may result, 

limiting its potential benefit, and possibly leading to a concomitant increase in operator workload. 

Research is needed to better understand factors influencing reliance on automation and identify 

candidate strategies that might optimize reliance for autonomous systems.  

 Reliance on automation may reflect psychological elements, such as individual differences 

of operators. One potentially relevant difference is the operator’s experience with video games. In 

the most relevant studies, video game exposure was demonstrated to be positively associated with 

a range of sensory, perceptual, and attentional abilities that contribute to performance on tasks 

requiring spatial cognition (Richardson, Powers, & Bousquet, 2011; Spence & Feng, 2010). 

Importantly, some studies provide evidence for ‘far transfer;’ training on video games produced 

improvements on other spatial tasks that are not closely similar to the task used for training 

(Spence & Feng, 2010). In addition, research by Cummings, Clare, and Hart (2010) revealed that 
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experienced gamers might collaborate more effectively with automation. Thus, video game 

experience may have specific benefits for RPA operators.  

Non-cognitive individual differences may also drive reliance on automation. Just as these 

differences have been found to influence team performance (Helmreich, Merritt, & Wilhelm, 

1999), non-cognitive mediators may generalize to human-automation interactions in the 

supervisory control domain, with automation considered an intelligent agent teamed with human 

operators. Szalma and Taylor (2011) explored the five-factor model of personality in response to 

automation in an unmanned ground vehicle (UGV) task. Their results, in addition to those of Chen 

and Terrence (2009; using attentional control survey and spatial ability tests with ground robots), 

support incorporation of individual differences into automation design. In respect to the air 

domain, one multi-RPA simulation showed a strong positive correlation between a measure of 

participant extraversion and reliance on automation (Kidwell, Calhoun, Ruff, & Parasuraman, 

2012). While the results from these and other studies suggest the importance of considering 

individual differences in automation design, the research also highlights the need to better 

understand the interplay of multiple factors (e.g., individual differences, level and reliability of 

automation, workload, stress, etc.). Results from Szalma and Taylor (2011) suggest that trait 

effects can be attenuated if participants can cross-check the automation with the “raw data” itself 

for performance verification. Thus, future research needs to examine how the degree to which 

operators have insight into the automation (transparency) moderates the relationship of traits to 

agreement with decision automation (see Chen et al., 2014). 

 In examining the interplay of factors influencing reliance on automation, one likely 

contributing contextual element is operator fatigue. RPA operations are often sustained over 

lengthy periods, during which operators may experience declining vigilance and loss of task 

engagement (Warm, Parasuraman, & Matthews, 2008). Field studies confirm that fatigue is a 

significant issue in current RPA operations (Tvaryanas & MacPherson, 2009). However, little is 

known about the role of fatigue in next-generation multi-RPA systems that will be more 

autonomous. Potentially, automation might be beneficial in supporting the fatigued pilot. 

Alternately, there may be a negative impact if the pilot’s fatigue results in over-reliance on the 

automation. This may stem from fatigue encouraging passive, reactive strategies as opposed to 

maintaining proactive control (Hockey, Wastell, & Sauer, 1998; Matthews & Desmond, 2002). If 

so, fatigue may encourage excessive trust, as the operator modifies task goals to minimize personal 

effort. 

   

3. RESEARCH GOALS AND OBJECTIVES 

An initial research goal was to prepare a simulation of multi-RPA operation for examining 

effects of automation configuration and fatigue on operator use and misuse of automation. Once 

suitable task paradigms were developed, experimentation commenced to examine the role of 

individual difference factors associated with personality, trust, and video gaming experience. The 

use of eye tracking was also examined to see if it provides a means for continuous diagnostic 

monitoring of automation use and fatigue. Throughout the effort, the aim was to determine how 

different levels and reliabilities of automation moderate reliance on automation and the impact of 

fatigue. Specific objectives were as follows: 

 

1. Test the Impact of Automation Configuration on Reliance, Trust, and Sustained 

Performance. Levels of automation (LOAs) refer to the tradeoff between operator control and 
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delegation of control to the machine. Higher LOAs (i.e., greater machine control) reduce 

operator workload, but also may result in vigilance decrements, loss of situation awareness, 

and complacency (Miller & Parasuraman, 2007). Another critical factor is the reliability of the 

automation. High reliability is desirable for performance optimization, but it may also 

encourage operator complacency. Building on existing work (i.e., Calhoun et al., 2011), this 

research investigated how fatigue impacts performance and over- or under-reliance on 

automation at different LOAs and reliabilities.  

 

2. Establish the Operational Significance of Fatigue in Multi-RPA Control. Performance 

changes were examined during extended missions, using a multiple autonomous system 

simulation with several partially automated tasks presented during missions with varying levels 

of workload demands. The interplay between fatigue and automation is anticipated to vary with 

the context in which fatigue is experienced. Passive fatigue, linked to monotony, is distinct 

from active fatigue, linked to chronically high workload (Desmond & Hancock, 2001). Both 

fatigue contexts are potentially operationally significant. The aim of this objective was to 

distinguish their effects for envisioned multi-RPA operations. 

 

3. Examine the Effect of Fatigue on Operator Reliance on Automation. Previous work 

(Neubauer, Matthews, Langheim, & Saxby, 2012) shows that fatigued surface vehicle drivers 

are more likely to use optional automation than those who are not fatigued. Thus, fatigue may 

encourage over-reliance on automation in the sense of voluntarily surrendering control to the 

machine. On the other hand, evaluating the utility of the automation may be perceived as a 

secondary task that the fatigued operator sheds, potentially leading to under-reliance. This 

research aimed to test whether fatigue experienced during multi-RPA operation contributes to 

over- or under-reliance, and whether any such effect depends on LOA and reliability of 

automation. 

 

4. Explore the Role of Individual Differences in Reliance on Automation and Fatigue. Past 

research suggests that individual differences may influence operator interaction with 

automation. For example, video game experience has been demonstrated to impact 

performance in a simulated RPA task (Cummings et al., 2010). Given that skill typically 

protects the operator against fatigue-related impairment (Matthews, Davies, Westerman, & 

Stammers, 2000), this research tested whether video game experience protects operators 

against over-reliance while fatigued. Additionally, personality traits were examined in respect 

to automation interaction with the goal of identifying candidate personality drivers that 

influence reliance on automation. Additionally, this research extended the study of Szalma and 

Taylor (2011) that showed personality traits present differential responses to automation by 

determining the significance of fatigue in this respect.  

 

5. Test the Utility of Eye Tracking Indices of Trust and Complacency. Few experiments have 

utilized gaze tracking to investigate trust in automation. However, several recent studies 

suggest how eye tracking could be employed to investigate the issue (e.g., Galesic, 

Tourangeau, Couper, & Conrad, 2008; Wickens, Dixon, Goh, & Hammer, 2005). These studies 

suggest that metrics such as the frequency of visual inspection of automated systems and 

average dwell time during operator interrogation of automation-provided action alternatives 

may provide objective indices of operator trust and reliance on automation.  Eye tracking is 
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also useful as a fatigue index (Wierwille, Ellsworth, Wreggit, Fairbanks, & Kirn, 1994), but the 

utility of eye tracking for diagnostic monitoring in automated task environments has yet to be 

established. 

 

6. Explore Manipulations of the Interface to Optimize Reliance on Automation. While 

industrial and educational psychology have examined the influence of individual differences on 

training and organizational structures, such measures have not been a main focus of human 

factors research. With advances in computing technology, it is now possible to dynamically 

adapt interfaces to take individual differences into account. For this objective the aim was to 

provide useful data on whether modifying the interface is likely to be successful. 

 

4. BACKGROUND 

Related to the specific research objectives delineated in Section 3, a more detailed review 

of pertinent literature pertaining to fatigue and individual differences is provided below.    

4.1 Fatigue with Respect to Multi-RPA Control 

Studies of RPA operators confirm that fatigue is a significant operational issue (Ouma, 

Chappelle, & Salinas, 2011; Tvaryanas & MacPherson, 2009). A variety of factors play a role, 

including those related directly to task demands, including long duty periods and human-machine 

interface difficulties (Ouma et al., 2011). However, there has been little work conducted on how 

fatigue responses may be controlled by task characteristics. The present effort aimed to establish 

the operational significance of fatigue in multi-RPA control. 

Fatigue is a complex, multifaceted construct; different aspects of fatigue may vary in their 

impact on performance (Matthews, Hancock, & Desmond, 2012). As noted in surveys of RPA 

operators (Ouma et al., 2011), fatigue overlaps with stress, which is also multifaceted. 

Contemporary dimensional models of fatigue differentiate a variety of components including acute 

and chronic fatigue, and emotional, motivational and cognitive expressions of fatigue (Matthews, 

Desmond, & Hitchcock, 2012). The completed research followed the model proposed by Matthews 

et al. (2002), which differentiates fundamental state dimensions of task engagement (energy, 

concentration, task motivation), distress (negative mood, lack of perceived control) and worry 

(intrusive, distracting thoughts). 

Use of a multidimensional model is important in research on fatigue and performance in 

order to characterize both the effects of the operational environment on fatigue, and to identify 

performance vulnerabilities. Recent work distinguishing active and passive fatigue states 

(Desmond & Hancock, 2001) demonstrates the need for a multidimensional perspective. Active 

fatigue develops in conditions of overload and frequent control operations, whereas passive fatigue 

is associated with underload and monotony. Studies of driver fatigue (Neubauer, Matthews, 

Langheim, & Saxby, 2012; Saxby, Matthews, Hitchcock, & Warm, 2007; Saxby et al., 2008) show 

that these two forms of fatigue correspond to different patterns of subjective state response. 

Passive fatigue is related to more rapid loss of task engagement, whereas active fatigue is 

characterized by distress and task disengagement. Furthermore, passive, but not active, fatigue 

relates to loss of alertness, operationalized as slowed response to an emergency event. In the RPA 

context, active fatigue may be most likely in periods of high task demands, requiring extensive 

multi-tasking, and passive fatigue may be typical of monotonous surveillance tasks. 
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Some relevant initial work on task-induced fatigue has been conducted at the University of 

Cincinnati. Guznov et al. (2011) showed that a simulated multiple robot control task tended to 

produce the high levels of workload and distress typical of active fatigue. A follow-up study 

(Guznov, Matthews & Warm, 2010) replicated this effect and showed that, in solo operators, 

subjective task engagement tended to decline over time. Guznov (2011) used a flight simulator to 

investigate the influence of workload on subjective state responses to performing a RPA mission 

requiring visual detection of ground targets. Task engagement declined substantially in a single-

task condition, but to a lesser degree in a dual-task condition (vehicle operation + responding to 

audio messages). The state response seen in the lower workload, single-task condition resembled 

the passive fatigue response observed in vehicle driving studies (Saxby et al., 2007, 2008). Finally, 

another study compared the impact on stress and fatigue of several workload manipulations, 

including number of RPAs, time pressure, and feedback, using the “RESCHU” simulation 

(Donmez, Nehme, & Cummings, 2010).  

Two types of cognitive impairment may be especially relevant in RPA operation, including 

loss of sustained attention and vigilance (Chappelle, McDonald, & King, 2010). A large literature 

on signal detection (Warm et al., 2008) demonstrates that vigilance is highly sensitive to fatigue. 

Work by Matthews and colleagues has shown that even mild-to-moderate levels of fatigue prior to 

performance of vigilance reliably predicts decreased perceptual sensitivity on a range of tasks 

requiring sustained attention (Matthews, Warm, Reinerman, Langheim, & Saxby, 2010a; 

Matthews et al., 2010b; Shaw et al., 2010). A recent doctoral dissertation (Guznov, 2011) 

confirmed that a measure of fatigue taken following training in target detection predicted 

subsequent detection performance in a simulation of RPA operation. The vigilance component of 

operations may be especially dangerous because vigilance tasks are often themselves a source of 

cognitive fatigue. 

 A further vulnerability to impairment originates in the multi-tasking nature of RPA 

operations. In addition to surveillance, operators must perform a variety of functions including 

vehicle control, communications and analysis of information from multiple displays (Mouloua, 

Gilson, & Hancock, 2003). Multi-tasking requires active, strategic management of the various task 

components. Such cognitive control is vulnerable to the demotivating effects of fatigue, as 

operators increasingly adopt effort-minimizing task strategies (Hockey, 1997), including task 

shedding (Schulte & Donath, 2011), and switching from a proactive to a reactive mode of control 

(Hockey et al., 1998; Sauer, Wastell, Hockey & Earle, 2003). 

4.2 Relation of Fatigue on Operator Reliance on Automation 

Potentially, automation may be beneficial in supporting the fatigued RPA operator. If some 

operator functions can be automated, operator impairments in cognitive control of multi-tasking 

may be mitigated. The operator’s shrinking pool of processing resources may be focused on the 

subset of task components for which human involvement is critical, leaving more routine functions 

to the machine. Benefits may be especially pronounced in high-workload phases of operations that 

produce active fatigue (Desmond & Hancock, 2001). Similarly, automation may be especially 

helpful in next-generation multi-RPA operation. 

However, there may also be dangers to automation technology, especially in circumstances 

that elicit passive fatigue. Generally, automation tends to shift operators from active controllers of 

their work activities to passive monitors of technology (Warm et al., 2008), implying a risk of task 

disengagement that may be exacerbated by fatigue. Specifically, the fatigued RPA operator may be 

inclined to mentally “coast” and let the machine do much of the work. For example, at the LOA 
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characterized by “management by exception,” the machine chooses an action, which the operator 

can override within a limited time window (e.g., Liu, Wasson & Vincenzi, 2009; Ruff, Narayanan 

& Draper, 2002). Fatigued operators may become reluctant to perform the mental work necessary 

to decide that an override is necessary, i.e., becoming over-reliant on the technology. 

The above-cited research suggests that in conditions of passive fatigue, the operator may 

show excessive trust or complacency, as an energy conservation strategy (Sauer et al., 2003). This 

is supported by observations in simulated vehicle driving research, in which fatigued drivers were 

more likely to engage vehicle automation, even though its use did not enhance performance 

(Neubauer et al., 2012). The impact of fatigue on trust may be especially pronounced when the 

automation is of high reliability. Conceivably, a different dynamic may operate when the 

automation is unreliable. The fatigued operator may be unwilling to exert the effort necessary to 

continually evaluate the utility of the automation, and so may ignore the automation where 

possible. Unreliable automation might also threaten the operator’s sense of control over the 

system, elevating distress, and potentially exacerbating active fatigue. Ouma et al. (2011) 

implicated interface issues in burnout, consistent with this suggestion.  

In sum, a case can be made that fatigue may augment some of the potentially harmful 

effects of automation. The stronger case is that fatigue, especially of the passive variety, may 

amplify over-reliance on automation, but in some instances fatigue might lead to neglect of 

automation. The research completed in this effort examined the effect of fatigue on operator 

reliance on automation. 

4.3 Individual Differences in Video-gaming Experience 

Usage of video games is becoming increasingly prevalent in adolescents and young adults 

(Anderson, Gentile, & Buckley, 2007). A recent review (Spence & Feng, 2010) concluded that 

video game exposure was positively associated with a range of sensory, perceptual, and attentional 

abilities that contribute to performance on tasks requiring spatial cognition. Benefits may be tied to 

the extensive practice that ‘serious’ gamers receive. Gentile (2009) reported that, in non-

pathological gamers, the mean and standard deviation of weekly hours of game play were 11.8 and 

12.6, respectively. 

 Could experience with video games build expertise that transfers to autonomous tasks such 

as RPA operation? Building a case of this kind requires results that show (1) commonalities in 

video gaming and RPA skills, (2) evidence that gaming enhances those skills, and (3) evidence that 

those skills transfer beyond the gaming task itself. Potentially, there are several types of skill that 

might generalize from gaming to RPA operation. Table 1 shows a simplified summary of critical 

aptitudes for RPA operations identified in Chappelle et al.’s (2010) analysis. Subject matter 

experts (SMEs) reported that operators lacking these attributes struggled to acquire relevant skills. 

 

Table 1. Summary of Critical Aptitudes for RPA Operation (from Chappelle et al., 2010). 

Attribute 
Cognitive 

proficiency 

Visual 

perception 
Attention 

Spatial 

processing 
Memory Reasoning 

Example 

processes 

Speed and 

accuracy of 

information-

processing 

Visual 

scanning, 

visual 

recognition 

Vigilance, 

divided 

attention 

Spatial 

analysis, 

spatial 

reasoning 

Working 

memory, 

delayed 

memory 

Problem 

solving, 

forward 

thinking, 

task 

management 
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Spence and Feng (2010) used a somewhat similar scheme to categorize the demands of 

different video genres, including action, driving, and maze/puzzle game types. Action games 

generally had the highest demands for attributes critical to RPA operations, including speeded 

processing, visual perception, and various forms of attention and spatial processing. They argued 

that ‘first-person shooter’ games (e.g., Halo, Call of Duty, Battlefield) were probably the most 

prevalent type from the action genre. 

 A variety of cognitive functions correlate with level of exposure to video games (especially 

action games), including visual search, visual attention, visual memory, contrast sensitivity, and 

mental rotation (Richardson et al., 2011; Spence & Feng, 2010). As these are correlational 

findings, they might reflect the influence of a third variable; perhaps individuals attracted to video 

gaming have high initial spatial ability, for example. Experimental studies have examined directly 

the effect of training on cognitive functioning. The majority of such studies confirm that training 

on action games improves aspects of spatial or attentional functioning (Green & Bavelier, 2008; 

Richardson et al., 2011; Spence & Feng, 2010).  

Importantly, some studies provide evidence for ‘far transfer;’ training on video games 

produced improvements on other spatial tasks that are not closely similar to the task used for 

training (Spence & Feng, 2010). For example, Spence, Yu, Feng and Marshman (2009) recruited 

participants with no previous first person shooter gaming experience. Training on the Medal of 

Honor: Pacific Assault game improved performance on a spatial attention task using stimuli 

unrelated to the game. Practice on action games (Spence & Feng, 2010), as well as on tasks 

requiring working memory or executive control (Tang & Posner, 2009), may enhance functioning 

of brain networks for attention.  

Thus, practice on action games may indeed enhance skills that are relevant to RPA 

operations. In an RPA simulation study, McKinley, McIntire, and Funke (2011) confirmed that 

experienced gamers showed visuospatial attention skills that exceeded those of pilots, and matched 

pilots in aircraft control skills. What remains to be investigated is the extent to which games 

improve the specific skills needed for optimal usage of automation. One relevant study is 

Cummings et al. (2010) who found that experienced gamers collaborated more effectively with 

automation in a simulated RPA task. However, it remains to be shown that gaming experience 

protects against adverse effects of fatigue. Broadly, skilled operators are less vulnerable to fatigue 

and stress effects than those of lesser expertise (Matthews et al., 2000), but the influence of skill on 

sustaining effectiveness in the RPA context remains to be explored. Should the role of video 

gaming expertise be substantiated from this effort’s research, there is a justification for further 

work on using game-like environments for training and selection of experienced game players as a 

potential mitigation strategy. 

4.4 Individual Differences in Personality  

Recent research has illustrated the importance of attention to individual differences, such as 

personality, when considering automation reliance and the role of trust (Burkolter, Kluge, 

Matthias, 2010; Szalma & Teo, 2010). For instance, Merritt and Ilgen (2008) found that when 

automation characteristics were held constant in an X-ray screening task, participants’ perceptions 

accounted for 52% of the variance in trust in automation. Moreover, extraversion was the 

individual difference measure noted to be related to propensity to trust and it moderated 

automation reliance.  



8 
DISTRIBUTION STATEMENT A.  Approved for public release.  Distribution is unlimited.  88ABW Cleared 07/08/2016; 88ABW-2016-3397. 

 

 In regards to research paradigms targeting supervisory control of autonomous vehicles, 

individual differences are now more frequently being examined. Chen and Barnes (2012) 

examined differences in UGV control in terms of spatial ability and perceived attentional control 

(PAC). Participants with high spatial ability performed tasks that involved switching between 

remote and local terrain views more effectively than those of lower ability (Chen & Terrence, 

2009). In a different ground vehicle simulation, Szalma and Taylor (2011) examined the 

relationship of operator personality (Five Factor Model) and operator performance, workload, 

stress, and coping. The results showed that all five traits were associated with differences on at 

least one measure of perceived workload and stress. However, the pattern of relationships between 

traits and dependent variables varied and task characteristics exerted the strongest influence. 

Focusing on RPAs, Cummings and colleagues (2010) categorized their simulation participants into 

three groups: automation consenters, dissenters, and mixed consenters. The dissenters often chose 

to ignore automated re-plan reminders. This tendency hurt their performance and prompted the 

authors to postulate that personality type can influence participants’ performance.  

Other RPA simulation-based research has shown differences associated with personality. 

Using a post-test procedure similar to Cummings et al. (2010), participants categorized as high 

achievers tended to distrust the automation, resulting in inflated task completion time (Ruff & 

Calhoun, 2011). Replicating the experimental paradigm, personality measures were recorded in a 

follow-on experiment and results (Calhoun, Ruff, & Murray, 2012) suggested a complex interplay 

between personality factors, level of automation, and task type. For instance, participants high in 

neuroticism tended to perform better on an infrequent change detection task. Performance on a 

frequently occurring image analysis task was better for participants showing low extraversion. In 

addition, low levels of autonomy were associated with better performance for participants who 

were high in neuroticism, conscientiousness, and agreeableness. A third experiment included a 

condition in which participants could change which of three intermediate autonomy levels was in 

effect (Kidwell et al., 2012). With this adaptable control scheme, participants’ choice of autonomy 

level was a behavioral indicator of reliance on automation. Results showed a very strong 

correlation between autonomy level choice and extraversion: highly extraverted participants chose 

the highest level of autonomy, which only required them to respond if they wanted to veto the 

automation’s recommendation. In contrast, less extraverted participants chose a level of 

automation that required the operator’s consent before acting. These results demonstrate the utility 

of a multi-RPA simulation for exploring the role of individual differences in interacting with 

automation. 

 

5. RESEARCH APPARATUS 

The experimental apparatus employed to gain a better understanding of the circumstances 

under which individual differences, fatigue, and automation characteristics may interact to produce 

inappropriate reliance on automation consisted of a multi-RPA simulation and an eye tracker. Both 

components underwent considerable modifications throughout the course of this effort to meet 

experimental objectives. The following provides further details.    

 

5.1 Multi-RPA Simulation 

The multi-RPA simulation was a system referred to as “ALOA” (Adaptive Levels of 

Autonomy; version 3), an automation research test bed developed by OR Concepts Applied 

(ORCA; Johnson, Leen, & Goldberg, 2007). This simulation incorporates the ORCA commercially 



9 
DISTRIBUTION STATEMENT A.  Approved for public release.  Distribution is unlimited.  88ABW Cleared 07/08/2016; 88ABW-2016-3397. 

 

available routing software/mission planner to provide needed complexity and realism. The tasks 

supported by the simulation are designed to represent the cognitive task demands envisioned for a 

single operator supervising multiple autonomous aircraft in a full mission scenario. Participants’ 

interaction with the simulation consists of monitoring the displays and making inputs via mouse 

and keyboard.  

The simulation software was executed on a custom iBuyPower Workstation with an Intel® 

Core™ i7-4820K CPU processor @ 3.70 GHz, 16.0 GB RAM, and a nVidia GeForce GTX 770 

graphics card (Microsoft© Windows 7 Enterprise 64 bit Operating System). Two monitors provide 

numerous windows to support participants’ completion of multiple tasks while supervising the 

automated flight of three aerial vehicles. A keyboard and mouse are used for participants’ inputs. 

5.1.1 Baseline ALOA Multi-RPA Simulation 

Figure 1 shows a screen shot of the baseline ALOA simulation that has been used in 

numerous evaluations (e.g., Calhoun et al., 2011).  Note the annotations highlighting each task 

window. A unique feature of the simulation is that for three of the primary tasks highlighted in 

Figure 1, the LOA can be manipulated independently and range from manual to fully autonomous 

levels. In the current effort, two intermediate LOAs were used as is customary for automated 

decision aids: manage by consent and manage by exception. Additionally, the experimenter can 

differentially establish the automation reliability of each task. The simulation also has numerous 

secondary tasks that can be included in experimental trials to induce different workload levels. The 

software supports data recoding for each task (task completion time and accuracy in most cases). 

The ALOA simulation is also unique in that there are three different control schemes available for 

setting LOA within the task: static (established by the experimenter and fixed for the entire trial), 

adaptive (based on participant performance, mission event, or experimenter manipulation), or 

adaptable (under participant control). Unless indicated otherwise, the LOAs for tasks were static 

for this effort’s experiments. 

The ALOA simulation also supports multiple experimental configurations. The script editor 

interface allows the experimenter to define the number of mission events and the nature of their 

occurrence. Events can be programmed either by specifying their frequency of occurrence or by 

stipulating specific times of occurrence (after mission start) for each desired event. Missions can 

vary in the number of task types presented, the frequency of each task type, and the timing of each 

task. For the image analysis task, the experimenter controls what is displayed in the task’s window, 

ranging from a simple photo with overlaid geometric symbols (e.g., to support an easily trained 

“count the number of diamonds” task) to a moving video (requiring the detection of a target of 

interest). In fact, the workload and difficulty of several of the simulation’s tasks can be 

manipulated. More information is provided below on how each task type (see Figure 1’s 

annotations) was implemented in the present effort. 
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Figure 1. Baseline Adaptive Levels Of Autonomy simulation (ALOA) annotated screenshot. 

Allocation and Router Tasks. Participants were instructed that these two tasks were the 

highest priority and should be completed, in tandem, as quickly as possible, whenever they started 

(signaled by an aural “ding” and a text message in the status bar). It was explained that failure to 

do so, would result in missing targets and routes failing. These instructions, in addition to 

employing a very high LOA for these tasks, helped ensure that each trial was properly executed 

(i.e., the routes passed the necessary targets which prompted surveillance tasks that were key to 

examining participants’ reliance on automation). With the high LOA, participants were only 

required to click on a button to start the automated process that allocated RPAs to any new 

unassigned targets (indicated by the blank circles). The automation then accurately assigned 

vehicles to targets such that each was viewed by an RPA with the appropriate sensor type 

(indicated by color). Participants were instructed to monitor the allocation progress (the 

termination of which was indicated by a “100% complete” readout). 

Once the allocation was completed (“100%” displayed), the participant waited for the 

automation to present a “Ready” message for each aircraft listed at the top of a rerouting window. 

When the ready message appeared for each aircraft, the participant was to click on each aircraft in 

the list and choose one of two new routes presented in the section below the vehicle list (the 

current route was listed above the two new options). Each new route had different ROE (rules of 

engagement) indicated (i.e., the ROE for which the route was optimized) and the participant was 

instructed to choose the route whose ROE matched the mission commander’s ROE instruction 

from the chat window. The ROE was assigned based on the current needs of the mission and each 

ROE (numbered 1-3) emphasized different criteria (e.g., “ROE_Controller: ROE_1: Image ALL 

Targets; AVOID Threats; NO Time Constraint”). 

 

Image Analysis Task. In the present effort, this surveillance task was the second priority 

task type, after allocation and router tasks. Figure 2 shows the task window of the image analysis 

task in the baseline ALOA simulation. Participants were prompted that an image taken by an 

aircraft was waiting to be analyzed by the addition of a row in the image task window (top queue) 

that included an identifier, time added, vehicle source, and counter showing analysis time 

remaining. Symbology in a timeline below the map (Figure 1) also provided cues of pending 

Range  

of LOAs 

Range  

of LOAs Range  

of LOAs 
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images (though timeline functionality was removed after the first study to avoid time tracking by 

participants). Participants had 30 s to complete the analysis before the image blanked and the task 

was recorded as a ‘miss.’ Task completion began with row selection that called up a photo with 

19-26 overlaid green shapes (diamonds, squares, circles, and triangles). Participants were to count 

the green diamonds and choose an option below the image (1-8) that matched their count. An 

automated decision aid (with medium LOA) recommended one of the options by highlighting the 

option and filling in its radio button. To complete the task and clear the photo, participants needed 

to click a “Select” button at the bottom of the window if the LOA was manage by consent. If the 

LOA was manage by exception, participants could click “Select” after choosing an option, or 

simply allow the countdown timer to expire to make a selection. Thus a participant could simply 

allow the automation to perform the task without interference. 

 

 

Figure 2. Sample close-up of image analysis task window. 

Change Detection Task. Periodically, a red plane symbol appeared at a random location 

on the map. Participants were instructed to click on the symbol with the mouse (alerting 

“headquarters” of the presence of the unidentified potential threat). This was the next priority task, 

after the Allocation, Router, and Image Analysis task types. Completion of this step (or the 

expiration of 10 s) caused the symbol to disappear. Completion time was measured from the 

appearance of the symbol until the participant clicked on the symbol. The number of misses was 

also recorded.   

Two other tasks available in the baseline ALOA system were deemed to be lowest in 

priority. These tasks help represent anticipated demands on a supervisor of multiple RPAs, as well 

as impose workload. Participants’ shedding of these lower priority tasks could be viewed as an 

indicator of fatigue state. 

 

Information Retrieval Task. Participants were required to monitor the chat window for 

requests for information to be retrieved from various testbed windows (RPA’s heading, fuel level, 

current number of objectives, route duration, threat exposure, SAM exposure, imaging tasks 
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remaining, or number of yellow, red, or black blocks in the timeline). For each information 

request, participants typed the corresponding value and selected ‘Enter’ in the chat window. Speed 

and accuracy in responding to the information requests were measured but not analyzed. For 

experiments conducted in this effort, the ratio of chat messages related to tasks (information 

retrieval and ROE changes) to those not task related (“chatter”) was 15:40.  Also, only the ROE 

messages appeared in red, increasing the participants’ workload to discern chatter messages from 

information request messages. 

 

Systems Status Task. In a window below the map (Figure 1), the status of the vehicle 

(“V”), weapons (“W”), and sensors (“S”) for each RPA was indicated. Periodically, the color of 

one of the circles changed from green to yellow (indicating a change from normal to abnormal 

status). Participants were required to monitor this information and click on the circle with the 

mouse to indicate awareness of the problem. If the button wasn’t clicked within 10 s, it changed 

from yellow to red and remaining in the red state for another 5 s unless clicked.  Thus, participants 

had 15 s to fix each failure, before the task was counted as a miss. The circle color returned to 

green with participant selection or after the 15 s timeout period. Response time was measured from 

when the circle changed to yellow until the participant clicked the circle. 

5.1.2 Enhanced ALOA Multi-RPA Simulation 

A significant portion of the first year of this effort involved re-configuring the ALOA 

multi-RPA simulation to better meet the research objectives listed in Section 3. The baseline 

simulation was designed to run repeated trials approximately 10-20 minutes in duration with a task 

load of approximately 4 tasks/minute. Repeating the available short trials/scenarios to fill more 

lengthy sessions was deemed inadequate in inducing fatigue as ‘participant states’ would reset 

during the breaks required to re-initialize the simulation. Rather, trial duration needed to be 

increased to support the investigation of the effects of sustained operations on participants’ use of 

automation. Despite several technical difficulties given ALOA’s use of a commercial router, two 

trials of 60-minute durations were generated, each with a different but similar scenario (e.g., 

defined locations and routes for RPAs and targets that were imaged).   

Besides trial length, the types of tasks provided in the baseline configuration were revisited. 

All the task types described in Section 5.1.1 were retained. However, several types of tasks were 

added to provide data to help inform the research objectives. These tasks are described in detail 

below and are reflected later in Figure 5). 

 

Digit Pairs Task. A task type with a sufficiently high ‘event rate’ to facilitate the detection 

of any loss of vigilance during the period of work was added, given that vigilance is likely to be 

the most fatigue-sensitive performance indicator. (Broadly, it was anticipated that passive fatigue 

would produce greater loss of vigilance than active fatigue (cf., Saxby et al., 2008), whereas active 

fatigue would produce greater strategic efforts at reducing workload, e.g., by task shedding.) The 

cognitive vigilance task added to help measure a temporal change in performance was based on a 

“digit pair task” employed by Bolia, Nelson, Middendorf, Guilliams, and McLaughlin (2004). It 

involves deciding if presented digit pairs meet requirements of a critical signal. To implement this 

task in ALOA, three small boxes (digits, ‘True’, & ‘False’) periodically appeared, overlaying the 

map (see Figure 3). The participants’ task was to compare the two digits and determine if the two 

numbers were within one digit of each other (or the same number) and if the sum of the two 

numbers was between ‘3’ and ‘15’ (and not ‘3’ or ‘15’). If both criteria were met, participants’ 
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correct response was to click “True” with the mouse. If at least one criterion was not met, 

participants’ correct response was to click ‘False.’ The three boxes disappeared after a response 

was clicked, or the task timed out (e.g., 10 s). The probability of any given stimulus presentation 

being a critical signal was approximately 80%.   

 

  
Figure 3.  Sample close-up of digit pairs task that overlaid the map. 

Communications Task: A second task type added to the baseline ALOA simulation 

required participants to monitor an audio stream to represent operational aural workload. This task 

type also avoids any modality interference issues associated with the other visual-based ALOA 

tasks. A version of the Coordinate Response Measure (CRM), a communication performance task, 

was employed (Bolia, Nelson, Ericson, & Simpson, 2000).  The CRM elicits multiple radio call 

recordings from 4 speakers, each including a specific call sign followed by a combination of one of 

four possible colors and a number from 1-8 (e.g., “ready Eagle, go to blue 8”). The auditory load 

was such that participants heard eight different call signs (including “Eagle”) during the trial 

according to the frequency setting for the particular study. When participants heard “Eagle”, they 

entered the first letter of the color and the number into the chat window. For example, for the call 

“ready Eagle go to red-six now”, the participant typed “r6” and pressed “Enter.” Data from pilot 

trials indicated that the CRM task increased workload, without significantly increasing time to 

train participants. 

  

Weapons Release Task. To augment the image analysis task available in the baseline 

configuration, another surveillance task was added to facilitate measuring operator reliance on 

automation. To revisit, over-reliance may take the form of neglecting to check the accuracy of 

automated functions. Trust in automation increases with reliability, but increasing trust may also 

encourage over-reliance on automation or complacency (Parasuraman & Wickens, 2008). Several 

studies (e.g., Dixon, Wickens, & McCarley, 2007; Rice & Keller, 2009) have indexed over-

reliance from the operator failing to override errors made by automated systems. Dixon et al. 

(2007) introduced metrics that distinguish between reliance (operator failure to correct automation 

‘misses’) and compliance (operator failure to correct automation ‘false positives’). Excessive 

reliance and compliance represent different forms of deviation from appropriate levels of trust. In 

the present research, reliance was indexed more generally as the extent of operator agreement with 

the automation. 

 The added surveillance task involving authorization of a weapons release was designed to 

generate metrics within the ALOA simulation similar to those employed by Dixon et al. (2007). As 

illustrated in Figure 4, measures of hits, misses, false alarms, and correct rejections can be 

measured with this task. Participants are signaled that there’s an image to be analyze by the 

addition of a row at the top of the weapon release authorization field of the imaging tasks window. 
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Clicking the row called up an image of terrain with several tanks (instead of the image with 

overlaid geometric shapes used for the image analysis task; see Figure 5). Participants were tasked 

to analyze the tanks and determine which were hostile versus friendly, according to their 

appearance. Friendly tanks had shorter barrels and a wider body in contrast to enemy tanks that 

had longer barrels and a thinner body. 

Some of the tanks were highlighted with a red box showing which tanks an automated 

target recognizer had identified as hostile. (The accuracy in which the automation marked images 

with red boxes was driven by the reliability setting for the particular study.) Participants could not 

modify the assignment of red boxes. They either confirmed or rejected the conclusion of the 

automated targeting system by authorizing a strike when all hostile tanks were highlighted, or not 

authorizing a strike otherwise. Thus, this task was designed to measure how much participants 

relied on the automation (red boxes), as the images were purposely made difficult to analyze (by 

adjusting blur and color) to better examine responses reflecting reliance and participants’ stress 

levels. (Participants were briefed that “sometimes the image will become temporarily obscured 

with static to represent the unreliability of the data link connection.”) 

 

 
 

Figure 4. Sample close-up of weapons release authorization task. 

 

 
 

Figure 5. Enhanced Adaptive Levels Of Autonomy simulation (ALOA) annotated screenshot. 
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5.2 Eye Tracker 

For some experiments, eye movement data were collected using a faceLAB eye tracker 

(Seeing Machines Inc., version 5.0, Figure 6). The desktop-mounted system consists of two 

infrared cameras and a group of infrared light emitting diodes. The system measured infrared 

corneal reflectance and pupil and head position to determine point of gaze at 60 Hz. While the 

system automatically outputs a wide variety of eye gaze metrics, the most relevant to this research 

include frequency and duration of eye blinks, percentage of eye closure, and frequency and 

duration of fixations and saccades.  Eye tracking was recorded on a separate system from the 

simulator on a Hewlett-Packard z400 Workstation with an Intel® Xeon® W3565 processor @ 

3.20 GHz, 12.0 GB RAM, and an AMD FirePro V4900 (x2) graphics card (Microsoft© Windows 

7 Professional 64 bit Operating System). 

 

 
 

Figure 6. faceLAB Eye Tracking System. 

 

5.3 Eye Tracker Link with ALOA Multi-RPA Simulation 

One objective of this effort was to explore adaptations of the interface to mitigate the 

impact of fatigue and optimize reliance on automation (Section 3). Previous experiments exploring 

physiological indices for adaptive automation have frequently relied on metrics derived from 

electroencephalography (EEG) and event-related potential (ERP) analysis (e.g., Mikulka, Scerbo, 

& Freeman, 2002; Pope, Bogart, & Bartolome, 1995; Prinzel, Freeman, Scerbo, Mikulka, & Pope, 

2003). However, eye tracking methods may provide substantial benefits over other methods for 

assessment of participant interaction with an automated system, in that eye tracking is less invasive 

(table mounted systems require relatively minimal calibration, without electrodes attached to the 

participant) and may allow diagnosis of changes in participant interactions with automation (i.e., 

shifts in compliance, reliance, and monitoring). This would involve data from the eye tracker being 

fed to the ALOA simulation to trigger one or more interfaces to adapt in some manner (e.g., 

change the LOA of a certain task or present a message in the chat window).   

To integrate the eye tracker with the ALOA simulation, it was determined that the easiest 

and most flexible approach would be one that allows each system to perform completely separate 

processes that communicate with one another. In other words, the communication would be 

applied to trigger changes in one or more ALOA interfaces based on on-going analysis of the 

participant's gaze point and other eye tracker data in the computer associated with the eye tracker. 

The ALOA developer, OR Concepts Applied, designed and implemented a messaging protocol in 
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ALOA for external processes to change the LOA, obtain current status, and display system status 

updates and chat messages.  

Further detail about the integration is presented below in Section 8.3. Study 3. Diagnostic 

Fatigue Monitoring for Adapting Level of Automation. 

 

6. RESEARCH OVERVIEW 

This research involved extensive collaboration of AFRL and scientists in academia. The 

linked efforts also provided an avenue to leverage the organizations’ respective experimental 

resources, namely, AFRL’s multi-RPA simulation and eye tracker/ocular-related algorithms and 

academia’s large subject pools that facilitate examining individual differences data. Both AFRL 

and academia used identical test apparatus in support of this research effort. 

 

6.1 Simulation Configuration and Pilot Testing 

Initially, the focus of the effort was on developing ALOA task configurations suitable for 

investigating reliance optimization under fatigue (see Section 5). This was followed by pilot 

testing conducted at the University of Cincinnati (n=6) and the University of Central Florida 

(n=12) to confirm that the configured tasks and training paradigm were at an appropriate difficulty 

level for the anticipated student participant pool. The pilot research also served to finalize how the 

new experimental tasks should be configured as well as the frequency of each task type for the test 

scenarios employed. Levels and reliabilities of automation to employ in the research were 

examined in addition to the objective and subjective measures. A key concern in the pilot testing 

was to validate task configurations for inducing the build-up of active and passive fatigue over 

time (similar to Saxby et al., 2007). One element of validation was to show that the manipulations 

produced the contrasting patterns of state change characteristic of active and passive fatigue 

(Saxby et al., 2007, 2008), with the goal of identifying the minimum duration adequate for the 

research objectives to make the conduct of the experimental test sessions across a large participant 

subject pool more manageable. This involved multiple cycles of experiment refinements after 

instances of pilot data collections. Refinements included changes to the simulation software, 

scenarios, training, experimental procedures, and data logging routines.  

 

6.2 Study 1.  Workload and Level of Automation Effects 

Once pilot testing was completed, experimentation commenced at the University of Central 

Florida to examine the role of individual difference factors associated with personality, trust and 

video gaming experience in automation usage during sustained operations. Specifically, this first 

full-scale experiment focused on how active and passive fatigue effects on performance and 

automation reliance vary with LOA. Passive fatigue is more damaging to attention because the 

operator becomes disengaged from the task (Desmond & Hancock, 2001; Matthews, Hancock et 

al., 2012). It was expected that passive fatigue effects would be accentuated by use of a higher 

LOA, encouraging the fatigued operator to rely increasingly on the automation. Conversely, active 

fatigue effects are mediated by excessive workload, so higher LOAs were thought to be beneficial 

under those circumstances because they should reduce workload. Task load was manipulated in 

Study 1 to induce contrasting states of passive fatigue (“monotony”) and active fatigue 

(“prolonged overload”; similar to previous work on simulated vehicle driving; Matthews, 

Neubauer, Saxby, & Langheim, 2012; Neubauer et al., 2012). This involved constructing two 60-
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minute trials that differed on the number of each task type. Generating different trial scenario 

configurations was based on the assumption, for example, that passive fatigue may be induced 

using underload conditions, such as controlling a single RPA with few in-flight events. 

Conversely, active fatigue should ensue when the operator controls multiple RPAs and must attend 

to numerous events under time pressure. This experiment also examined LOA and involved 

measurement of task accuracy, reliance, stress, fatigue, and workload. Participants were 43 men 

and 58 women (mean age = 18.95 years). Section 7.1 describes key findings from this study; more 

detail is provided in Lin et al. (2015).  

 

6.3 Study 2. Fatigue and Reliability Effects 

This study tested how the effects of LOA and fatigue identified in Study 1 vary with 

reliability, in a lower-workload configuration. As automation reliability decreases, the operator is 

likely to allocate increasing effort to monitoring the automation for errors. This process is 

potentially damaging in active fatigue conditions (risk of overload of attention if effort has to be 

diverted to monitoring the automation), but helpful in passive fatigue conditions (helping the 

operator remain proactive rather than reactive). To better ensure that participants reached the 

desired fatigue state and to confirm if fatigue influences suboptimal use of automation, it was 

decided to increase the trial scenario duration to 120-minutes, as well as decrease the event 

frequency of some task types. Thus, this study was designed to determine the impact of automation 

reliability on performance, reliance, and fatigue using a scenario designed to induce passive fatigue 

with low task load. Participants were 81 men and 50 women (mean age = 19.86 years). The same 

measures utilized in Study 1 were employed. Study 2 findings are summarized in Section 7.2 and 

further detail is given in two additional articles (Lin et al., 2016; Wohleber, Calhoun et al., 2016).  

This study also employed an eye-tracker to begin examining the utility of ocular parameters for 

measuring fatigue and for diagnosing inappropriate operator reliance, compliance, and monitoring 

of the ALOA automation. Data were collected from a subsample of Study 2 participants: 26 men 

and 13 women (mean age = 19.86 years). 

 

6.4 Study 3. Diagnostic Fatigue Monitoring for Adapting Level of Automation 

The objective of this study is to explore how real-time eye parameter recordings might be 

employed to drive interface adaptations and improve task performance. In fact, research utilizing 

eye gaze behavior for adaptive automation is represented infrequently in the scientific literature 

and what has been conducted is almost exclusively focused on detection and mitigation of operator 

workload. However, this research is relevant in its demonstration that even relatively low level 

indices of eye gaze behavior such as pupil diameter (de Greef, Lafeber, van Oostendorp, & 

Lindenberg, 2009) and fixation dispersion (Fidopiastis et al., 2009) can successfully actuate 

adaptive automation, lending credence to the suggestion that it could be applied in the current 

context as well. In Study 3, eye fixation-based thresholds, determined from data collected in Study 

2, are being applied for detection of changes in fatigue state that then trigger changes in 

surveillance task LOA. More details are provided in Section 7.3. 
 

7. OVERVIEW OF RESEARCH PROCEDURES 

Section 8 provides more details on each study, including citations for further information. 

Here, a general overview of the procedures is provided.   
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7.1 Participants 

College students participated in the studies for course credit. Participants represented the 

age group and educational level of the military service core that may be selected for future RPA 

operations. All participants confirmed that they were fluent in English and had normal hearing, and 

normal, or corrected to normal, 20/20 vision. Medical conditions, including psychiatric conditions, 

which may compromise participant safety or performance, were grounds for exclusion. Individuals 

taking psychoactive drugs were excluded. None were experienced pilots.   

 

7.2 Procedures 

Sessions began with participants’ informed consent and a brief overview. Next, participants 

completed questionnaires to measure demographics, individual differences, and subjective state 

(see Section 7.4). Training followed with an explanation of the ALOA simulation’s displays and 

controls. The automation was described as “somewhat reliable, but prone to error” when 

automation was 60% reliable, and “quite reliable, but not perfect” when the automation was 80% 

or 86.7% reliable. Next, each task type was described and practiced, in turn, in single task 

vignettes. This was followed by a 15-minute training trial where participants were required to 

complete all the task types. The training trial was repeated if participants failed to complete the 

primary tasks accurately and within the system defined time-out limits. Training took 

approximately 30 min and was followed by a single experimental trial (either one 60-minute or 

120-minute trial) with the assigned experimental condition (e.g., workload level, automation 

level/reliability, and static/adaptive LOA). All experimental trials contained the same types of 

tasks (see Section 5). Also, all trials used the same task prioritization scheme:  top priority - 

allocation and router tasks; second priority - image analysis and weapons release task; third 

priority - change detection task. The remainder task types were lower and equal priority: 

information request task, systems status task, ‘digit pairs’ task, communication task. However, the 

frequency of each task type differed across experiments depending on the trial length and whether 

the objective was to induce passive or active fatigue. Tasks of particular interest to examining 

participants’ reliance on automation (the image analysis and weapons release surveillance tasks) 

were presented at the same frequency across conditions within each study. The entire session time 

was approximately 2-3 hours per participant.  

All data were analyzed qualitatively and quantitatively using descriptive statistics. Objective 

performance data were analyzed with parametric statistical techniques (repeated measures 

Analysis of Variance, ANOVA). Mixed model ANOVAs were typically used to test for statistical 

differences in subjective states. Correlation analyses were also applied to examine the relation of 

individual difference and experimental variables.  

Given the focus on individual differences, power analyses for the correlational analyses were 

conducted for Study 1 (n=101) and Study 2 (n=131). Conventionally, Pearson r values of 0.1, 0.3, 

and 0.5 define small, medium and large bivariate associations. A study design should have 

adequate power to detect medium or larger magnitude Pearson rs, given that small rs are rarely of 

practical significance. In the power analyses, Type I error probability α was set to 0.05 (two-

tailed). For Study 1, power values for small, medium and large r values were calculated as 0.17, 

0.88, and 1.00. For Study 2, these values were 0.21, 0.94, and 1.00. Thus, power was adequate 

(>.80) to detect medium magnitude correlations in both studies. Studies were not intended to test 

for small magnitude correlations. 
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7.3 Objective Data 

To address the key objectives of the studies, data analyses typically focused on three 

performance metrics for each surveillance task (image analysis and weapon release authorization): 

accuracy, reliance, and neglect. Accuracy was defined as the percentage of correct responses. 

Reliance on automation was measured by the percentage of total responses on which the 

participant followed the recommendation from the automation. The frequency of surveillance tasks 

not initiated (i.e., the row was not clicked by the participant to call up the image for the task) was 

considered a measure of neglect.  

 

7.4 Subjective Data 

Prior to training and objective data collection, the following instruments were 

administered:    

 

Video Gaming Survey. As part of a demographic questionnaire, participants were asked to 

assess their video gaming experience and expertise overall, for both first person shooter games and 

for action games (e.g. “Estimate your level of expertise playing video games, in general”). 

Participants responded to experience questions based on an 8-point scale indicating number of 

hours a week anchored by 0 = “0-1” and 7 = “20+”. Participants responded to expertise based on a 

7-point scale (0 = “no expertise” and 6 = “expert”).  Items were selected on the basis of existing 

research that suggests the importance of distinguishing different forms of gaming (Spence & Feng, 

2010). 

 

40 Mini-Marker Personality Scale. This scale, derived from Goldberg’s (1992) 100-item 

scale personality scale, assessed Big Five factors (Saucier, 2002) of extraversion, agreeableness, 

openness, conscientiousness, and neuroticism. Participants used a 9-point Likert scale anchored by 

0 = “Extremely Inaccurate” and 9 = “Extremely Accurate”, to rate how well 40 different adjectives 

described their personalities. 

 

One instrument was administered both before and after data collection: 

 

Dundee Stress State Questionnaire. States such as active and passive fatigue (Desmond 

& Hancock, 2001) differ qualitatively; therefore, a multidimensional scale that gauges three higher 

order dimensions of subjective state related to self-regulation during performance was employed. 

The Dundee Stress State Questionnaire (DSSQ: Matthews et al., 2002) was used to assess intra-

task changes in relevant state dimensions such as task engagement, distress and worry. Task 

engagement was of particular interest, as it has been found to be sensitive to passive fatigue 

manipulations (e.g., Saxby et al., 2008). Participants responded to statements describing current 

emotional state using a 5-point Likert scale anchored by 0 = “Definitely false” and 4 = “Definitely 

true.” Both pre-and post-task (latter: instructed to consider trial’s final 10 minutes) versions were 

recorded to assess stress state in response to task performance. 

 

After objective data collection, subjective data were collected with the following measures: 

  

NASA-TLX Task Load Index. This workload assessment tool (Hart & Staveland, 1988) 

provided a multi-dimensional rating procedure that addressed the mental, physical, and temporal 
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demands of a task, in addition to the participant’s performance, effort, and frustration. Each of the 

six dimensions was assessed with a twenty-step bipolar scale. Analysis employed the raw scores.   

 

Human-Computer Trust Scale. The human-computer trust scale (HCT; Madsen & 

Gregor, 2000) is a reliable (Cronbach's α = 0.94) measure of affective and cognitive components of 

trust in automation. Items gauge confidence in an automation and willingness to act on the 

automation’s recommendations through five constructs which are believed to impact level of trust 

in an automated decision aid: perceived reliability (R), perceived technical competence (T), 

perceived understandability (U), faith (F), and personal attachment (P). This study used a 

shortened version with items from each of the five constructs (R3, F3, T3, U2, R4, F1, P4, & U3). 

Participants responded to items based on their experience with the decision making aid automation 

by indicating the extent to which they agreed with statements about their trust by using a 5-point 

Likert scale anchored by 0 = “Extremely disagree” and 4 = “Extremely agree” (e.g. I can rely on 

the system to function properly). 

 

Experimenter-generated Form. Participants completed a form assessing trust and 

automation usage with questionnaire items that pertained to specific ALOA components, based on 

previous work at AFRL.  

 

7.5 Eye Tracker Data 

For some studies, ocular parameters were recorded to determine their utility for detecting 

fatigue state as well as inappropriate reliance on automation. Specifically, the following were 

recorded: fixation frequency and duration, blink rate and duration, percent time eye closed 

(PERCLOS), and gaze point. Additionally, fixation type was determined based on Schleicher, 

Galley, Briest, and Galley’s (2008) parameters for express (<150 ms), cognitive (150-900 ms), and 

overlong (>900). Frequency of each fixation type was tallied and the percentage of the occurrence 

of cognitive fixations relative to all fixations was calculated. For more information on specific 

metrics see Wohleber (2016). Criteria for inclusion were necessarily loose to accommodate 

limitations with the eye tracking hardware’s ability to track edges. For example, researchers 

attempted to meet a standard of mean angular error of 2 degrees or less, however, data was still 

recorded for participants if this angular error requirement was not met along the left and right edge 

of the dual monitors. For more on inclusion criteria see Wohleber (2016). 

 

8. SPECIFIC STUDIES 

For each experimental study conducted, the following provides a brief overview of key 

methodological details and results. Further information is available in the cited publications.  

8.1 Study 1.  Workload and Level of Automation Effects 

The first full-scale experiment focused on examining active and passive fatigue effects on 

performance and automation reliance as a function of the LOA. Additional detail for Study 1 is 

available (Lin et al., 2015). Two different 60-minute trial scenarios were implemented to induce, 

respectively, passive and active fatigue. The scenario designed to induce passive fatigue employed 

a mean task frequency of 4.8 tasks/minute. This is similar to what was used in previous research 

(15-minute scenarios, 6 tasks/min; Calhoun et al., 2011). In contrast, the task frequency was 
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increased significantly in the scenario designed to induce active fatigue (mean of 16.7 

tasks/minute). Table 2 provides details pertaining to each of ten task types. The five task types at 

the bottom of the table differed in frequency between the low workload (passive fatigue) and high 

workload (active fatigue) trials. In contrast, the frequency of other tasks was held constant across 

scenario types, to better compare performance in terms of reliance on automation.  

 

Table 2. Task Information including Task Frequency in Passive and Active (Low and High 

Workload) Scenarios. 

TASK 
60 MIN-

PASSIVE 

60 MIN-

ACTIVE 

AUTOMATION 

RELIABILITY/CONFIG 

Allocation 20 20 
100% Reliable 

(High Automation) 

Router 20 20 
80% Reliable 

(Mgt by Consent) 

Image Analysis: 

Count Diamonds 

60 

(TO 30 s) 

60 

(TO 30 s) 

80% Reliable 

(Mgt by Consent & Exception) 

Weapon Release 

(Tank ATR) 

60 

(TO 20 s) 

60 

(TO 20 s) 

80% Reliable 

(Mgt by Consent & Exception) 

Change 

Detection 

24 

(TO 10 s) 

24 

(TO 10 s) 
N/A 

Qts in Chat 10 80 N/A 

Systems Status 30 (TO 15 s) 240 (TO 15 s) N/A 

Digit Pairs 10 (TO 10s) 80 (TO 10s) N/A 

Comm Auditory 

Monitoring 

32, 1 Hit/8m 

(TO 15 s) 

240, 1 Hit/8m 

(TO 15 s) 
N/A 

Monitor Chat 20 ‘noise’ 180 ‘noise’ N/A 

Note. TO = time out. 

 

 The experiment used a 2 (workload: low versus high) x 2 (LOA: management-by-consent 

versus management-by-exception for the two surveillance tasks) mixed factorial design with 

workload being the between-subject variable (see Table 3). 

 

Table 3.  Experimental Design Employed in Study 1. 

 Subjects Workload    Level of Automation  Condition 

n = 25 Low 
Management by Consent 1 

Management by Exception 2 

n = 26 High 
Management by Consent 3 

Management by Exception 4 

     

The results confirmed that the high workload scenario elevated both NASA-TLX workload 

scores and DSSQ distress scores, compared to scores with the low workload scenario. Performance 

on several tasks was degraded in the high workload scenario (see Figure 7 for accuracy and neglect 

measures). The task load effects were stronger for the more demanding weapon release task 

compared to the image analysis task. Participants generally showed an appropriate level of trust 

(reliance) in the automation (i.e., high but not total). However, there was some variance in reliance 
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according to task parameters. More demanding conditions (weapon release task, high workload 

scenario) tended to reduce reliance, although it is in demanding conditions that trust in the 

automation may be most important (see Figure 8; reliance is mean percent of responses that 

followed the automation’s recommendation). The lower level of automation (management by 

consent) was also associated with less reliance. However, in general, task workload level had more 

effect on performance than LOA did (Lin et al., 2015).  

 

Figure 7. Mean percentage task accuracy (left) and neglect (right) for image analysis and weapon 

release authorization tasks as a function of task load. Bars represent standard errors. 

 

 
Figure 8. Mean reliance for image analysis and weapon release. Bars represent standard errors. 

 

In terms of the individual difference data, stress state appeared to be unrelated to reliance. 

It was, however, associated with poorer surveillance task performance (e.g., higher neglect), as 

shown by high DSSQ distress and low task engagement. Results also suggested that personality 

predicts reliance and neglect, but not task accuracy. Participants that were higher in 

conscientiousness and agreeableness were less likely to neglect opening the surveillance tasks. 

These two personality constructs were also related to lower distress, whereas neuroticism was 

related to higher distress.  

Video gaming expertise had more predictive value than the number of hours spent playing 

video games per week. Specifically, expertise was correlated with performance on the more 

demanding weapon release surveillance tasks. Those with higher levels of expertise, especially on 

action and First Person Shooter games, were more accurate and showed less task neglect. Video 
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gamers also relied more on the automation in demanding conditions and exhibited higher 

subjective task engagement and lower distress and worry. Gender differences were not statistically 

significant when video gaming experience was controlled.  

 

8.2 Study 2. Fatigue and Reliability Effects       

This follow-up study examined whether automation usage under sustained fatigue is 

moderated by the automation’s reliability. More detail is available in Lin et al. (2016) and 

Wohleber et al. (2016). A between-subjects design was employed whereby each of the 131 

participants was assigned to one of the two reliability conditions. The automation’s response 

recommendation accuracy for both surveillance tasks (image analysis and weapons release 

authorization) was either 86.7% (high, n=67) or 60% (low, n=64). These reliability levels are 

consistent with previous studies of automation reliability (Parasuraman, Molloy, & Singh, 1993). 

Participants were not told the specific reliability level, just either that the automation was “quite 

reliable, but not perfect” (high level) or “somewhat reliable, but prone to error (low level). For this 

study, the experimental trial was lengthened to 120-minutes and was designed to induce passive 

fatigue (see Table 4 for task frequency; a trial to induce active fatigue was not utilized). For some 

measures, data were compared across the eight 15-minute blocks.  

 

Table 4. Task Information including Task Frequency in 120-minute Scenario Trial.  

TASK 
120 MIN-

PASSIVE 

AUTOMATION 

RELIABILITY/CONFIG 

Allocation 20 
100% Reliable 

(High Automation) 

Router 20 
100% Reliable 

(High Automation) 

Image Analysis: 

Count Diamonds 

60 

(TO 30 s) 

60% or 86.7% Reliable 

(Mgt by Consent & Exception) 

Weapon Release 

(Tank ATR) 

60 

(TO 20 s) 

60% or 86.7% Reliable 

(Mgt by Consent & Exception) 

Change 

Detection 

48 

(TO 10 s) 
N/A 

Qts in Chat 8 N/A 

Systems Status 16 (TO 15 s) N/A 

Digit Pairs 16 (TO 10s) N/A 

Comm Auditory 

Monitoring 

16, 1 Hit/30m 

(TO 15 s) 
N/A 

Monitor Chat 16 ‘noise’ N/A 

 

 Results showed that the automation reliability manipulation was successful. The data 

indicated that participants had slightly higher task accuracy with the high reliability condition 

compared to the low reliability condition, as well as lower stress and more subjective trust (e.g., on 

the HCT). However, reliance on automation differed substantially based on automation reliability 

level (see Figure 9). Participants relied considerably more on automation in the high reliability 

condition, compared to the low condition. Additionally, reliance on automation was more 

consistent over time with high reliability automation compared to low reliability automation. For 

the weapon release task, reliance on low reliability automation was more erratic and showed a 
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more pronounced decline than did reliance on the high reliability automation. Optimally, the 

reliance metric should match the objective level of reliability of the automation. However, while 

participants tended to be initially over-reliant on automation, relative to its reliability, by the end of 

the task, participants were under-reliant for weapon release. Thus, fatigue may be associated with 

under-utilization of automation rather than complacency, possibly because managing automation is 

perceived as an additional task that is shed as fatigue progresses. 

   

                            Imaging Task                                             Weapon Release Task 

        
Figure 9. Percent reliance on automation in imaging analysis (left plot) and weapon release 

authorization (right plot) tasks as a function of reliability level. 

   

Correlational analyses of individual difference data also showed interesting findings. 

Participants with higher experience and self-rated expertise in video gaming tended to be less 

distressed and more engaged initially, but only first person shooter game involvement predicted 

post-task success. Although it was expected that video gaming experience would bolster 

performance in the low reliability condition, no significant relationship between video gaming 

expertise and performance in any condition was observed. Expertise may be especially important 

when workload is particularly high, as in Lin et al.’s (2015) study that found benefits to gaming 

expertise. Inspection of the data confirmed that video gamers were less likely to rely on 

automation when the reliability was low, which may reflect greater performance skills. These 

results are consistent with those of previous studies (Abich, Matthews, & Reinerman-Jones, 2015; 

Lin et al., 2015) that suggest the value of selecting operators who are expert video gamers. Distress 

was also found associated with lower accuracy in Weapons Release, similar to Study 1, but only 

when reliability was low. 

Analysis of the personality data showed a positive relationship between extraversion and 

reliance for women in the high reliability condition, and between extraversion and low accuracy 

for men in the low reliability condition. The trend in the data for the men is consistent with the 

general tendency for extraverts to perform poorly on tasks requiring sustained attention (Finomore 

Matthews, Shaw, & Warm, 2009). Female extraverts may compensate for this performance 

vulnerability by relying more on the automation when viewed trustworthy.  

Gender differences were evident elsewhere in the data. The openness personality factor for 

men was positively correlated with reliance on high reliability automation, and was also related to 

conscientiousness and performance based outcomes. Particularly interesting is that the relationship 

between conscientiousness and mean performance was the opposite for women and men. In the 

low reliability condition, conscientiousness was related to higher performance and lower reliance 
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on automation in women, but lower performance and marginally higher reliance on low reliability 

automation in men. It is suspected that these results may reflect social skills (developed earlier in 

women and correlated to work performance; Witt & Ferris, 2003; Bennett, Farrington, & 

Huesmann, 2005) being related to the use of automated aids. 
In regard to fatigue, the results showed a large-magnitude decline in task engagement from 

pre- to post-task DSSQ results, supporting the hypothesis that the simulated 120-minute RPA 

mission induced substantial passive fatigue (see Figure 10). The data suggest that fatigue effects 

may be mitigated in resilient operators, i.e., those with low distress and high task engagement. 

Also, if passive fatigue induced an energy conservation strategy (Sauer et al., 2003), the lack of a 

systematic temporal change for performance on the Image Analysis task might be explained if 

participants found it less effortful than completing the more difficult Weapon Release Task. 

Generally, participants tended to disuse the automation more with time on task as fatigue 

increased, especially in the low reliability condition. In that reliance patterns with fatigue were 

similar for both automation reliability levels, interventions developed to promote reliance 

optimization should be effective for both low and high reliability automation.  

 

 
          Figure 10. DSSQ distress, task engagement, and worry self-ratings pre- and post-task. 

 

Study 2 marked the beginning of the recording of eye parameters (see Section 7.5).  It was 

originally planned to explore the use of eye tracking metrics in examining trust in automation 

based on the assumption that the frequency and duration of scanning could be interpreted as 

indirect indicators of trust in an automated system’s performance. For example, Parasuraman et al. 

(1993; also Parasuraman & Riley, 1997), posited that automation-induced complacency may result 

in less frequent scanning of automated task components. Subsequent experimentation utilizing eye 

tracking has generally validated this supposition (e.g., Flemisch & Onken, 2000), though 

automation reliability has also been demonstrated to moderate this effect (e.g., Wickens et al., 
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2005). In sum, past research suggests that operator over reliance (and potentially, under reliance) 

on automation may be diagnosed using eye tracking metrics such as frequency and duration of 

fixations. In addition, eye-tracking research examining internet search behavior (e.g., Galesic et al., 

2008; Guan & Cutrell, 2007) provided a method for diagnosing operator compliance with 

automation. This research indicated that operators typically accept the first entry in a list of 

automation-provided action alternatives – frequently without fully interrogating all options, to 

arrive at a rational, informed decision. This suggests that metrics such as serial position and 

average dwell time during operator interaction with automation-provided actions may index 

operator compliance. 

Finally, there is some possibility that operator fatigue may interact with automation 

induced complacency, such that fatigued operators may be more likely to rely on automation (i.e., 

by more frequent failures to detect automation ‘misses’) and comply with automation (i.e., by 

accepting inappropriate automation recommendations more frequently) than when they are not 

fatigued. This outcome would be demonstrated in metrics of eye gaze behavior by operators 

fixating less frequently and for shorter durations on task aspects that are automated, and by 

operators spending less time fixated on automation-recommended courses of action (as an index of 

participants’ evaluation of those options).  

 Unfortunately in the present effort, the integration of the eye tracker with the ALOA 

simulation was problematic, limiting the degree to which eye parameters could be applied in the 

manner accomplished in the research reviewed above. By applying the faceLAB quality scale 

(range 0-3), only a subset of participants (N = 39) met our criteria of having over 75% of the 

samples having a score of at least 2 (one eye tracking) or 3 (full tracking). One issue was the 

difficulty in maintaining track of the eye with the ALOA system because it employed two 24-in 

widescreen monitors. It was still difficult to maintain track of participants’ gaze point (study 3 

switched to two 20-in standard monitors at 1680 x 1050 resolution with marked improvement in 

tracking quality). Moreover, the sizes of the elements within the task windows that might inform 

automation usage (e.g., fixating on one response option versus another or whether the participant 

skipped analyzing the image and just looked and accepted the automation’s recommendation) were 

too small to allow for confident fixation target discrimination with the current apparatus. 

The results from this subset of participants showed that the ocular measures were typically 

more sensitive to time on task than to the level of automation reliability (e.g., see Figure 11).  

 

 Percentage Time Eyes Closed                   Number of Cognitive Fixations 

  
Figure 11. Percentage of time eyes >80% closed and frequency of cognitive fixations for low and 

high automation reliability levels as a function of time block.  
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An additional analysis was conducted examining the mean percentage of time participants 

spent gazing at each element of the of ALOA display. To accomplish this analysis, the display was 

partitioned into separate areas of interest (AOI’s) where each represented the separate sub-task 

elements of the ALOA simulation (shown in Figure 1). However, division of some areas was not 

feasible because the sub-task display elements were essentially too small for the eye tracker to 

reliably distinguish, leading to the combination of some task elements into aggregate AOI’s. This 

approach resulted in seven distinct AOI’s presented in Figure 12 below. AOI 1, which corresponds 

with the image tasks, was further subdivided into two regions reflecting the image and response 

elements of the task. 

 

A) Left ALOA monitor 

 
 

B) Right ALOA monitor 

 
 

Figure 12. ALOA areas of interest designated for dwell time analysis. Panel A and B reflect the 

ALOA sub-tasks presented to participants on the left and right monitors, respectively. 
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 Analysis of the cumulative time participants spent gazing at each AOI (i.e., dwell time) was 

then conducted utilizing a 2 (reliability) x 8 (time block) x 8 (AOI) mixed ANOVA. The results of 

this analysis revealed statistically significant main effects for time block, F (4.13, 156.81) = 13.66, 

p < .05, p
2 = .264, and AOI, F (1.42, 53.98) = 369.87, p < .05, p

2 = .907, a statistically 

significant time block by AOI interaction, F (7.03, 267.04) = 30.61, p < .05. p
2 = .446, and a 

statistically significant reliability by time block by AOI interaction, F (7.03, 267.04) = 2.19, p < 

.05, p
2 = .054. No other sources of variance in the analysis were statistically significant (all p > 

.05). As can be seen in Figure 13, participants spent the most time gazing at AOI 6 (the main RPA 

display), and that, overall, they reduced the amount of time they spent gazing at the display across 

time blocks.  

 

A) Low reliability 

 
B) High reliability 

 
 

Figure 13. Mean dwell time (seconds) in each AOI per time block for the low (Panel A) and high 

(Panel B) automation reliability conditions. 
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To further explicate the reliability by time block by AOI interaction, follow up post hoc 

simple effects analyses were conducted separately examining the effects of reliability and period at 

each AOI. The results of these analyses indicated that mean dwell time changed as a function of 

period in AOI’s 1.1, 1.2, 4, 5, 6, and 7, but not in AOI’s 2 and 3 (both aspects of the allocation 

task). However, the observed changes in dwell time across AOI’s were best described by complex 

polynomials (order 5-7), suggesting that changes cannot simply be ascribed to time-on-task effects. 

With regard to reliability condition, the simple effects analyses indicated it had little effect on 

dwell time (i.e., there were no statistically significant main effects of reliability, nor any 

statistically significant reliability by time block interactions, all p > .05). 

 For a more complete accounting of eye tracking metrics and outcomes, please see 

Wohleber (2016). 

 

8.3 Nonlinear Analyses of Eye Gaze Behavior 

 

As part of this program of research, several alternative eye gaze analysis approaches were 

explored for detection of fatigue and operator reliance. These approaches primarily utilized 

nonlinear time series analysis, such as recurrence quantification analysis (RQA), to characterize 

participants’ fixations for patterns, and to examine if those patterns were differentiable based on 

reliability condition and time-on-task. Short abstracts broadly describing each effort are presented 

below. 

 

Alternative indices of performance: An exploration of eye gaze metrics in a visual 

puzzle task. Of interest to the U.S. Air Force is the ability to develop and characterize the level of 

workload that operators are under at any given point. When an operator’s cognitive resources 

exceed demands, a ‘red line’ of performance may be crossed after which performance breaks 

down. What is needed is an estimate of operator state; a ‘dipstick’ for the operator in order to 

assess the level of ‘resources’ available, in order to avoid performance problems. Traditional 

approaches use secondary tasks (e.g., mental arithmetic) or secondary physiological measures 

(e.g., heart rate variability) for state assessment. However, this study was motivated by dynamic 

systems theory which indicates that there are meaningful patterns of variability in ‘primary’ 

behaviors (e.g., required activities) which might provide a measure of operator state. Eye gaze was 

utilized as a primary measure in a visual puzzle task. The link between eye gaze and attention is 

generally accepted as is the link between attention and performance outcomes. The goal of 

Experiment 1 was to determine if performance changes in a visual puzzle task were reflected in 

eye gaze, as measured in multiple ways, i.e., conventional (e.g., average fixation length) and 

dynamic (e.g., β values, measures derived from a recurrence matrix) indices. These relationships 

were explored in relation to task difficulty, time on task, as well as spare capacity. The results of 

Experiment 1 suggest that there are impacts of task demands on gaze patterns, for both 

conventional and dynamic gaze metrics. There were also significant effects of practice on eye gaze 

patterns in Experiment 1 that could be interpreted as learning or strategy shifts with time-on-task. 

The impact of learning on eye gaze was explored in a follow up experiment. The results of 

Experiment 2 show a significant improvement in performance in the task accompanied by change 

in gaze patterns when repeating the same puzzle; and that the dynamic measure of diagonal 

recurrence was systematically related to this performance change. This suggests that non-

conventional measures of dynamic structure provide additional and complimentary information 

about operator state.  
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For a more complete accounting of this research, please see Russell et al. (2014). 

 

Effects of automation reliability on structure of gaze patterns over time. Air Force 

operations are becoming increasingly automated, exemplified by the vision to enable single 

operator supervision of multiple RPAs. While increased automation is a requirement for this 

vision, it also introduces human factors issues. In particular, the operator may become 

inappropriately reliant on automation, potentially compromising human-automation system 

performance. One route to monitor operator reliance is gaze tracking; however, few experiments 

have focused on this approach. Several recent studies suggest that metrics such as the frequency 

and pattern of visual inspection of automated system components may provide objective indices of 

operator trust and reliance on automation. Specifically, the regularity of the pattern of transitions 

between areas of interest was evaluated as well as the homogeneity of the distribution of gaze as a 

function of time and reliability of automation. Hierarchical linear mixed model analysis of the 

regularity of transitions between areas of interest indicated a significant difference between high 

and low reliability conditions as a function of time.  Individuals in the high reliability condition 

tended to linearly decrease in regularity of gaze patterns over the first half of the session, but 

exhibited a higher degree of second order growth than groups in the low reliability condition, who 

exhibited an overall higher degree of regularity in gaze patterns by the end of the session.  

Additionally, analysis of the Shannon entropy of the distribution of gaze duration binned into 500 

by 500 pixels showed that individuals in the high reliability condition tended to become more 

focused on particular regions of the display over time, whereas groups in the low reliability 

condition did not. Together, these results indicate the high reliability automation increased the 

regularity of gaze patterns of individuals over low reliability conditions, perhaps by allowing 

individuals to focus on key areas rather than distributing their attention more uniformly. 

For a more complete accounting of this research, please see Tolston et al. (2016). 

 

8.4 Study 3. Diagnostic Fatigue Monitoring for Adapting Level of Automation       

A further advantage of eye tracking, in the context of the current proposal, is that 

substantial research has been conducted linking changes in eye gaze behavior to states of fatigue. 

Perhaps the most robust effects reported in the literature are that states of fatigue increase blink 

rate and blink duration (see e.g., Stern, Boyer, & Schroeder, 1994, and Schleicher et al., 2008, for 

reviews of the relevant literature). In addition, the percentage of eye closure (PERCLOS; 

Wierwille et al.,  1994) has been identified as a useful indicator (e.g., Dinges, Mallis, Maislin, & 

Powell, 1998; McKinley, McIntire, Schmidt, Repperger, & Caldwell, 2011), though some recent 

research suggests that it is influenced by individual differences (e.g., Schleicher et al., 2008; van 

Orden, Jung, & Makeig, 2000), potentially reducing its overall utility as a fatigue indicator, unless 

individual differences may be factored into the diagnostic model.  

Building on the results from Study 2, a study is in progress to explore how real-time eye 

parameter recordings might be employed to diagnose fatigue state and, in turn, drive interface 

adaptations and improve task performance. Its objective is to examine the utility of an ocular-based 

fatigue detecting algorithm for adapting task LOA. The thresholds employed in the algorithm are 

based on the analysis of ocular data collected in Study 2. Specifically, the frequency of express 

(less than 150 ms) and cognitive (150-900 ms) fixations for each 15-minute periods of a 120-

minute scenario will be determined. Once the pre-determined threshold for triggering fatigue 

mitigation has been met, the LOA of the two surveillance task will be reduced for the next 15-

minute period from one requiring a consent response to one that has no automated aiding. The 
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LOA will then revert back during the subsequent period. Success in meeting this objective will be 

demonstrated by participants in the adaptive automation condition outperforming participants 

assigned to a condition with static LOA.  

 

9. CONCLUSIONS 

The effective application of automation to future systems is a significant priority of the Air 

Force (Dahm, 2010; Endsley, 2015). While manned cockpits have become increasingly automated, 

the level of system automation present in most RPAs is even greater. The need for future pilots to 

supervise multiple RPAs adds to the critical role of automation (Eggers & Draper, 2006). Existing 

psychological research on automated systems has established beneficial effects of automation on 

operator workload and situation awareness, as well as identifying a range of threats to operational 

effectiveness (Parasuraman & Mouloua, 1996). Both over- and under-reliance on automation may 

jeopardize effectiveness of the human-automation system (Parasuraman & Riley, 1997). Thus, it is 

timely to conduct basic research on automation usage issues during sustained operations with the 

goal of enhancing the designs of human-automation interfaces for future RPA systems. It is 

especially important to support operators working in conditions of fatigue and stress that are 

prevalent in RPA missions (Ouma, Chappelle, & Salinas, 2011). 

This research effort extends knowledge pertaining to human-automation in several respects. 

First, the studies demonstrate that the nature and cognitive demands of the RPA task itself may 

pose significant human factors challenges. Workload demands of RPA operation are known to be 

highly variable. Here, the high workload was associated with time pressure and multitasking-

induced large-magnitude increases in distress (Study 1), whereas low workload and a monotonous, 

longer-duration mission produced passive fatigue and loss of task engagement (Study 2).  As 

expected, performance deficits were also obtained associated with higher workload (Study 1) and 

lower automation reliability (Study 2). In addition, Study 2 suggested a vigilance-like temporal 

decrement in accuracy on the more demanding Weapon Release task, especially when automation 

reliability was low. 

Although participants were appropriately sensitive to automation reliability (Study 2), there 

were several instances in which reliance on automation was suboptimal. In Study 1, participants 

tended to under-rely on automation, especially for Weapons Release and when the LOA was set to 

management-by-consent. Thus, participants do not turn to assistance from the automation in the 

higher demand conditions in which reliance would be appropriate. In Study 2, participants became 

increasingly under-reliant on automation for Weapons Release over time, despite a tendency 

towards deteriorating performance over time for this ISR task component. Generally, participants 

do not seem adept at using automation strategically to compensate for performance shortcomings, 

which would be a concern in any practical application. 

Second, study findings identified several individual difference factors that may influence 

operator performance and reliance on automation. Individual differences in stress response were 

associated with performance on ISR tasks, consistent with previous studies (Matthews et al., 

2013). Generally, high distress and low task engagement were associated with less accurate 

performance and neglect of mission objectives. However, these associations were more 

pronounced when the task was configured to be more demanding due to high workload (Study 1) 

or unreliable automation (Study 2).  Stress states were not consistently associated with reliance on 

automation. Instead, several personality factors were discovered that predicted reliance, although 

correlations varied with task factors, similar to previous studies of the role of personality in 
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automated systems (Szalma & Taylor, 2011).  Results showed that self-rated expertise in video 

gaming, especially with action games, was associated with both more effective performance, and 

better trust calibration, but only when workload was high (Study 1). Cognitive-attentional skills 

acquire through action gaming may enhance multi-tasking under time pressure. Video gamers also 

showed higher levels of subjective task engagement in both studies, suggesting some general 

resilience to task stress. 

Third, findings suggest strategies for mitigating performance deficits and suboptimal use of 

automation. Correlational findings suggest that selection of stress-resilient operators may generally 

benefit mission outcomes, although these individuals have no special advantage in automation use. 

Recruitment of experienced action gamers would also be advantageous, especially for high-

workload missions. Findings also suggested that, with video gaming experience controlled, female 

operators may perform as well as male ones. However, predictors of operator performance and 

trust may vary somewhat by gender. A second mitigation strategy is to develop finely-tuned 

training interventions to target specific vulnerabilities. Given that suboptimal use of automation 

and performance deficits depended on task configuration, training interventions might be 

developed for problematic configurations. For example, participants might be trained to rely more 

on automation to mitigate high workload. At the least, training should incorporate scenarios 

varying in workload, level of automation, and automation reliability. The role of personality 

factors in reliance suggests that training could also be tailored to individual characteristics, 

although clarification of the seemingly complex role of personality traits in trust may be necessary. 

A third form of intervention is to use diagnostic monitoring of operator neurocognitive status to 

drive adaptive automation. Data suggest that eye tracking may provide a nonintrusive means to 

operator monitoring, although there are practical issues surrounding tracking across dual screens, 

and it appears to be easier to monitor for fatigue than for reliance optimization. Study 3 will 

provide further evidence on the feasibility of the approach. Work is underway to implement eye 

tracking metrics measures into an adaptive interface designed to adjust LOA to levels of operator 

fatigue. 

Taken together, these results provide a better understanding of the circumstances under 

which individual differences (e.g., video game experience), fatigue, and automation characteristics 

may interact to produce inappropriate reliance on automation. They demonstrate that in conducting 

research and evaluating RPA automation, it is critical to examine effects across a range of task 

configurations. In addition, the utility of eye tracking to diagnose suboptimal use of automation 

was explored. While single operator supervisory control of multi-RPAs was employed as the 

problem domain to support the proposed research, these findings should inform human-automation 

interaction in several domains including vehicle operation, process control, and medicine. Future 

applications for the outcomes of this research also include selection and training, operator 

performance assessment, and online adaptive aiding. 
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